
A Motion Planning System for Gibbon Brachiation
April 22, 2022

Jason Lee
Department of Visualization

Texas A&M University
College Station, Texas, USA

jzblee@tamu.edu

Figure 1: Procedural animation of brachiation

ABSTRACT

This paper presents two methods for authoring motion resem-
bling gibbon brachiation in digital content creation (DCC)
software: one using key-based animation in Autodesk Maya,
and one using physically-based animation in Epic Games’
Unreal Engine. By blending techniques from both approaches,
brachiation may be achieved along an artist-defined path in
3D space.

KEYWORDS

motion system, physically-based modeling, constraints, ani-
mation, brachiation

1 INTRODUCTION

Digital content creation (DCC) applications have simplified
virtual depictions of creature locomotion. This capability is
in high demand in countless areas, from film to research. The
list of techniques at artists’ disposal is heavily spurred by
developments in computer graphics. There is a similarly large
list of patterns of animal movement to simulate. One such
pattern is brachiation - a form of arboreal locomotion used
by gibbons to swing between trees. Regardless of the motion
being simulated, a hybrid system that uses computer control
but still affords a great degree of artistic freedom is most
desirable. To this end, the systems presented take a set of
locations and solve for a path along which brachiation may
occur.

2 BACKGROUND INFORMATION

2.1 Brachiation

Brachiation is the primary mode of locomotion used by gib-
bons. The motion is characterized by the grasping of tree
branches (or ”substrate”) by alternating limbs and a graceful
swinging motion. An analysis of brachiation by Zhang iden-
tifies six phases of the movement, in which the brachiator
manipulates its limbs and center of gravity to successfully
navigate a path. Although uncommon, a gibbon may fail to
grasp the next handhold. If so, it attempts to swing backward
and forward again, to cover the greater distance [6].

2.2 Previous Approaches

Zhang and Wong present a method using physically-based
modeling to simulate brachiation with a 3-link model in the
2D space, i.e. each rotating joint in the model has one degree
of freedom (DOF) [7].

Ufford uses MATLAB’s differential equation solver to inte-
grate equations of motion for a 2-link brachiating robot, also
in 2D [5].

Berseth uses reinforcement learning in a case study on
brachiation and generalizes the problem to 2D pendulum
navigation [1].

2D is often chosen to keep the problem manageable; the
equations for simulating a pendulum system, let alone an
already complicated problem like brachiation, are extremely
complex in 3D.



Lee

2.3 Animation Techniques

Predefined animation, key-based animation, and physically-
based animation are three approaches to modeling creature
locomotion.

Predefined animation is entirely created by the artist. Most
character animation in feature films is done using this method.
Although the artist works with pre-built rigs that define
the range of motion, they can manipulate them to convey
expression and emotion. DCC software may be configured to
interpolate between the artist’s defined key poses, but the
artist is otherwise given a great degree of control.

Procedural animation delegates more of this control to
the computer. For many animals, gaits can be expressed
relatively simply. Human walking, for example, is a commonly
assigned animation exercise due to its cyclic nature. Such an
attribute leads to easier translation to DCC software and the
expression of motion in simple formulae. Other approaches
place even more emphasis on real-world reference. The gaits
of quadruped animals have been studied extensively and are
frequent cases for applying procedural animation, such as in
analyzing animal footage to reconstruct gaits [3].

Physically-based animation incorporates concepts such as
classical mechanics to model dynamic phenomena [4]. To that
end, the resulting simulation takes into account the physical
attributes of the object being animated, any internal and
external forces, and the characteristics of the environment.
Consequently, the technique lends itself best to the animation
of objects such as hair and cloth. Ragdoll physics, another
application of physically-based animation, is common in video
games.

3 KEY-BASED BRACHIATION

A path for key-based brachiation has one important require-
ment: consecutive handholds should be at most two arm
lengths apart. A desirable path should be a reasonably energy-
efficient traversal between two points in space given a set of
handholds (i.e. possible intermediate points). To that end, a
shortest-path algorithm can minimize the distance that the
brachiator must cover.

Handhold positions are randomly generated by dividing
the scene space into smaller uniformly-sized volumes and per-
forming stratified sampling. With two handholds in opposing
corners of the scene space designated as the starting and
ending points, a graph consisting of the set of all handholds
and the set of edges representing each pair of handholds that
are less than two arm lengths apart is constructed. Finally,
Dijkstra’s algorithm is used to generate the shortest path
between the start and end points [2].

Due to the constraints and the nature of stratified sampling,
there may not always be a valid path. If that is the case, a
regeneration is advisable.

3.1 Path Animation

The rig used in this approach is a rigid model consisting of
five separate parts and three pairs of joints for the hands,
shoulders, and elbows. An inverse kinematics solver computes

arm positions. Each important pose is generated program-
matically and interpolated by the DCC application.

As described in the previous section, Dijkstra’s algorithm
yields the handholds that make up the shortest path be-
tween the starting and ending points. Analysis of brachiation
footage identifies stages during which gibbons use both hands
to grasp the substrate. We may use each consecutive pair of
points in this list to solve for the body position during such
contact poses.

A gibbon’s arms approximately form the two equal sides
of an isosceles triangle, with the third side spanning the two
handholds. Since all three of the side lengths and two of
the point positions are known, trigonometry may be used to
determine the angles of the triangle. The cross product of
one vector spanning the two handholds and another vector
pointing straight down gives an ideal rotation axis. A vector
of one arm length aligned to the spanning distance may then
be rotated into position using the rotation axis and angles
to calculate the correct position for the body.

pL pR

pB

−→
l′

−→
lθ θ

Figure 2: Using trigonometry and vector math to
solve for the body position pB at each contact pose.

Various correctives are made to enhance the quality of the
animation, such as the lateral movement of the body during
phases where the center of gravity has shifted to one side. In
addition, the body is always kept at one arm’s length from
the contacted handhold at each frame, resembling a hard
constraint. Finally, the free arm is animated to swing down
and around the torso during each half-cycle.

4 PHYSICALLY-BASED BRACHIATION

4.1 Unreal Engine and PhysX

This project used the Early Access 2 build of Unreal Engine 5.
While Epic Games’ Chaos physics solver became the default
option upon UE5’s official release on April 5, 2022, this
project continued to use Nvidia’s PhysX, the previous default.

A large part of Unreal Engine’s flexibility arises from the
availability of both a node-based system (Blueprint Visual
Scripting) or a code-based system for programming entity
behavior. For the physically-based approach, C++ was used
to generate an Actor with a simple component hierarchy and
control movement at each engine update (or tick).



A Motion Planning System for Gibbon Brachiation

4.2 Physics Constraints

Physics-based simulations use constraints when a distance or
angle should not change. Hard constraints enforce this require-
ment by correcting the system to resolve all inconsistencies at
each tick, while soft constraints apply a compensatory force
to each element instead.

Unreal Engine provides Physics Constraint components
that allow for the creation of soft constraints between any
two physics objects. A variant of this spring-like attachment
draws the body and free arm towards the next handhold
during each cycle.

pT
−→
d

−→
l′

−→
l′′

pL

pB
pR

Figure 3: Using spring constraints to maintain the
pendulum’s shape and generate an appropriate force
on the body pB and free arm (currently pR) so that
they are drawn towards the target point pT . The
spring constant and rest length of the spring con-
necting pT and pR are much higher than those of the
spring connecting pT and pB.

4.3 The Double Pendulum Brachiator

The rig consists of three spheres representing a body and
the left and right hands. This geometry simplified testing, as
PhysX calculates moments of inertia.

Each half-cycle of brachiation consists of one locked arm,
and one free arm. Throughout the movement, the free arm
swings from the previous handhold to the next one. Target
spring forces are activated only when a free arm is detected
to be at the bottom of its swing; that is when its Z velocity
moves from negative to positive.

In addition, the brachiator keeps track of whether it is
undergoing frontswing or backswing, based on when the free
arm reverses direction at the tops of swings. Target spring
forces are only activated in the case that the brachiator is
in frontswing, and is in the process of moving up toward the
target node.

One potential issue with keeping state this way occurs when
the brachiator’s free arm makes a complete loop around the
locked handhold instead of swinging backward, as this results
in an inconsistent state.

Throughout the entire movement, the velocity is also con-
stantly being modified to bias motion in the direction towards
the next handhold, and to diminish the effect of any motion
that is orthonormal to this direction.

pT

−→v
−→
v′

Figure 4: Modifying the velocity to decrease the
component normal to the direction from the free
arm to the target handhold.

5 DISCUSSION

5.1 Intended Audience and Applications

This tool was made to allow artists to more easily author
brachiation in Unreal Engine’s real-time environment. For
the tool to be most effective, the intended audience should
not need to worry about the underlying aspects of the code,
the engine, the physics solver, or other low-level components.
They only need to think about the specifics of the path that
the gibbon should take as well as the distances between each
handhold. Issues with the physics solving or interface can be
referred to the author to fix. This allows for the abstraction of
the entire motion of brachiation, reducing the artist’s mental
load.

This tool has applications in previsualization, as the specifics
of each swing and the exact geometry of handholds are not
locked. Just as predefined animation encompasses many meth-
ods, such as pose-to-pose, straight-ahead and layered, so can
brachiation: via the key-based approach, the physics-based
approach, or a combination of multiple approaches. In previ-
sualization, the physically-based simulation may serve as a
jumping-off point for refinements made later in the process
(i.e. in layout and animation). This routine resembles that of
motion capture, in which 3D tracking data is collected and
then refined by animators.

5.2 Determinism and Tradeoffs

Another substantial point of discussion is the use cases of
deterministic and nondeterministic simulations. The former
gives reliably consistent output since the timestep always
remains fixed. Although the state at one frame depends on
the state in previous frames, using the same initial condi-
tions is sufficient to guarantee the same output each time.
However, nondeterministic solutions incorporate some form
of adaptation. For example, the timestep may change be-
cause of variations in the state of the motion system and
hardware. Bullet and PhysX are examples of deterministic
and nondeterministic physics solvers, respectively.

The nature of a real-time environment like Unreal Engine,
in which good performance is critical, makes the use of a
nondeterministic system desirable. Deterministic physics sys-
tems are helpful for film, as each frame is predefined and can
be rendered offline. Therefore, simulations can be performed



Lee

with greater precision at the cost of greater simulation run-
time. However, games necessitate a careful balance of visual
fidelity and system performance.

Variations in the timestep can lead to instability in the
simulation. When the brachiator changes handholds, the
pendulum system needs to start rotating around a different
fixed point. At the same time, the physics constraints are
reconnected such that they point from the root down. This
may lead to repeated attempts by the engine to reconcile the
geometry of the individual bones, leading to instances where
velocity is set to an abnormally high value.

For example, merely moving the mouse in the viewport
during a simulation could drastically lengthen the timestep.
Most of these problems were fixed by forcing the engine to
use a higher minimum framerate, which also raised the time
resolution of the simulation. Doing so came at the cost of
reduced engine performance.

5.3 Adding Character

Stability issues aside, the challenge of balancing physics and
artistic direction is paramount. A larger degree of control
affords artists the ability to add personality to the movement.
A common method for adding character to biped walks is to
focus on the animation principle of exaggeration: to amplify
the weight or personality of a character. However, several
concepts that have been explored in much detail for biped
walks will need to be redefined for brachiation, a movement
largely resembling that of a pendulum. At present, characteri-
zation may be improved by tuning the simulation: the physics
constraint components contain parameters that control the
strength of various spring forces. Raising or lowering these
values may be used to show vigor or lethargy, respectively.

6 FUTURE WORK

One possible extension is the implementation of a Backward
Solve using Control Rig. Control Rig is a plugin that al-
lows for bidirectional rig solving within an engine: a forward
solve derives bone transforms from control transforms; a
backward solve derives control transforms from bone trans-
forms, allowing a rigged geometry to be mapped onto bone
animation. Since the three joints present in the simulation
could be mapped onto any rig control, the rig may introduce
additional intervening joints such as shoulders and elbows.

Other improvements include the addition of more move-
ment types, including traversals where both limbs are un-
locked at some point (e.g. to cover larger distances). Another
issue that arose was excess velocity leading to the free limb
making a full loop around the locked point, which could be
helped by damping the velocity or adding an upper limit.

In addition, many examples of reference footage show
gibbons traversing structures that are also moving in turn;
they are affected by external forces like the wind, or by the
force imparted by the gibbon’s movement. As this system
directs the free arm of the brachiator in the direction of
the next handhold at each tick, additionally simulating the

motion of each handhold is sufficient for path generation to
proceed as normal.

The author is creating a proof-of-concept application that
takes advantage of Unreal Motion Graphics to facilitate the
placing of the handholds and simulation of motion through a
user interface.

An entirely different approach to this problem is to use
reinforcement learning, as shown in [1]. Through this method,
simulated brachiators may complete increasingly plausible
traversals of motion paths.

7 CONCLUSION

The primary feature of this tool is to allow for quick iteration
on designing brachiation paths for previsualization and layout.
In addition, the capabilities of Unreal Engine provide various
avenues for extension through the use of plugins such as
Unreal Motion Graphics and Control Rig. Finally, although
this problem has undergone many iterations in 2D space, this
paper gives an approach to creating said movement in 3D
space.

ACKNOWLEDGMENTS

Many thanks to my advisory committee - Tim McLaughlin
(chair), Phil Galanter, and Dr. John Keyser - for helping me
along the way and to Jason Spencer for generously providing
computing hardware.

REFERENCES
[1] Glen Berseth. 2019. Scalable deep reinforcement learning for

physics-based motion control. Ph.D. Dissertation. University of
British Columbia. https://doi.org/10.14288/1.0378079

[2] Edsger W Dijkstra. 1959. A note on two problems in connexion
with graphs. Numerische mathematik 1, 1 (1959), 269–271.

[3] Laurent Favreau, Lionel Reveret, Christine Depraz, and Marie-
Paule Cani. 2004. Animal Gaits from Video. Graphical Models 68
(08 2004). https://doi.org/10.1145/1028523.1028560

[4] Donald H. House and John C. Keyser. 2017. Foundations of
Physically Based Modeling and Animation. CRC Press, Boca
Raton, FL.

[5] David Ufford. 2009. Simulation of a 2-link Brachiating Robot
with Open-Loop Controllers. (Jun 2009). http://hades.mech.
northwestern.edu/images/e/e4/399UffordMonkeyBotSim-v2.pdf

[6] Zheng Zhang. 2006. High Controllability and Automaticity for
Physically-based Animation of Brachiation. Ph.D. Dissertation.
Nanyang Technological University. https://doi.org/10.32657/
10356/35724

[7] Zheng Zhang and Kok Cheong Wong. 1999. Animating Brachia-
tion. In Eurographics 1999 - Short Presentations. Eurographics
Association. https://doi.org/10.2312/egs.19991065

https://doi.org/10.14288/1.0378079
https://doi.org/10.1145/1028523.1028560
http://hades.mech.northwestern.edu/images/e/e4/399UffordMonkeyBotSim-v2.pdf
http://hades.mech.northwestern.edu/images/e/e4/399UffordMonkeyBotSim-v2.pdf
https://doi.org/10.32657/10356/35724
https://doi.org/10.32657/10356/35724
https://doi.org/10.2312/egs.19991065

	Abstract
	1 Introduction
	2 Background Information
	2.1 Brachiation
	2.2 Previous Approaches
	2.3 Animation Techniques

	3 Key-based Brachiation
	3.1 Path Animation

	4 Physically-based Brachiation
	4.1 Unreal Engine and PhysX
	4.2 Physics Constraints
	4.3 The Double Pendulum Brachiator

	5 Discussion
	5.1 Intended Audience and Applications
	5.2 Determinism and Tradeoffs
	5.3 Adding Character

	6 Future Work
	7 Conclusion
	Acknowledgments
	References

