
Hand-Drawn Ray Tracing
Casey Conway and Jason Lee
Rensselaer Polytechnic Institute

Figure 1: Hatched reflecting spheres

ABSTRACT
We present a strongly parallelized implementation of a two stage
non-photorealistic ray-tracer designed to output rendered scenes
in a hand-drawn aesthetic. Our program is designed to run on
IBM’s Blue Gene supercomputer and takes advantage of a novel,
chunk-based bargaining system to maximize efficiency through
strategic load balancing. We present a metric for estimating the
cost of rendering each pixel, and we compare the performance of
various parallel optimizations to analyze the efficiency gained by
our final algorithm.

KEYWORDS
ray tracing, non-photorealism, hand-drawn, parallel

1 BACKGROUND
Ray tracing is a well studied technique for rendering high quality
images with global illumination. First introduced in [5], it allows
the detailed rendering of reflective and refractive surfaces as well
as realistic shadows. [2] expands the method with stochastic tech-
niques to include features such as anti-aliasing, soft shadows, and
glossy reflections. We implement the stratified sampling techniques
of [2] to try and reduce the noise and clumping artifacts introduced
by adding randomness to the rays.

Ray tracing works by shooting rays from the camera position
towards the scene through a grid of output pixels. The shading of
each pixel is determined by the computations of each ray, which re-
cursively construct an exponentially expensive ray tree throughout
the environment. Each ray is cast through the scene and terminates
when it hits an object. Depending on the material properties of the
hit surface, it may produce additional rays to account for reflective
bounces or shadows. Shadows are computed by shooting more rays
from the hit surface towards each light source, and calculating the
percentage of unobstructed rays to approximate the amount of light
received at that particular point.

We extend this ray tracing implementation to include silhouette
edge detection as described in [1] to determine the locations of
mesh boundaries. This step is succinctly summarized by casting an
extra stencil of rays for each pixel to determine if an edge should
exist based on the percentage of hits from different objects. We
require harder edges on our objects to help identify the borders

between foreground and background objects when our hand-drawn
step occurs.

Our final post-processing step makes the rendered images look
hand-drawn by applying a similar technique as introduced in [3].
Although their contribution is for real-time applications running
on the traditional graphics pipeline, we are able to succesfully adapt
their technique to be used with our ray-tracing results.

2 OVERVIEW
Our algorithm first renders a given scene in .obj format into a
.ppm image file using our parallized ray-tracer implementation.
This is a highly configurable and robust system that allows for the
specification of various parameters, such as the camera position,
the direction the camera should face, toggleable soft-shadows, the
quality of the shadows, the number of reflected ray bounces, the
number of anti-alias samples, the thickness of silhouette edges, the
ambient lighting values, and the resolution of the output image,
among many others.

Ray tracing on a whole is embarrassingly parallel, as each pixel
can be computed without needing information from surrounding
pixels. This fact allows us to easily divide work between ranks and
allow the parallel speedup to occur. However, a naive implementa-
tion partitioning pixels results in very poor load balancing for most
images, resulting in ranks finishing at different speeds and idling
instead of actually working. We discuss in detail below a more
complicated algorithm with complex inter-rank communication
and threading to achieve full system usage.

Our improved parallel raytracer will produce a rendered, photo-
realistic output image. For many use cases, this is a fine stopping
point. However, our particular project is more interested in produc-
ing a non-photorealistic pencil shaded effect to make 3D scenes
seem as if they were drawn by hand.

To achieve this, we have a post-processing pipeline to generate
bitmaps of pencil strokes corresponding to various light levels.
We then read in the ray-traced image, threshold it based on the
brightness of each pixel, and compute the final output by pulling
from the corresponding bitmap texture instead. In all, this is a much
cheaper operation than the ray tracing step and does not require a
supercomputer for reasonable performance times.



3 PARALLELIZATION APPROACH
We begin by describing the various levels of parallelization we
experimented with and examine the relative improvement gained
with each step. As our algorithm evolved in complexity, we were
able to more effectively utilize our runs on the supercomputer as
we improved the overall runtime.

3.1 Sequential
Our starting code base had no parallelization of any kind, so we
were able to run a few test cases on just our laptops to see exactly
how long a render would take. In one of our simplest examples,
shown in (figure 7), a 4k render with 1024 shadow samples and no
anti-aliasing takes nearly 5 hours to compute. This scene only has
two primitives and a quad for the floor, so intersection tests are
very cheap to compute.

In examples such as the watchtower (figure 5), we have many
more potential collisions and thus each ray is much more expensive
to compute. There are many very good solutions to this problem,
such as using octree spatial data structures as described in [??], but
we currently do not have those implemented due to time constraints.
As such, the much higher cost of each ray due to collision checks
leads to more complicated test cases being infeasible to render at
higher resolutions on a single core.

3.2 Naïve Parallel
As ray tracing is embarrassingly parallel, themost obvious approach
is to evenly split work between each rank. We divide each desired
image into an n ×m grid of pixels and assign each of the R ranks
nm/R pixels worth of work.

As simple as this approach is, it works quite well and is effective
in lowering the runtimes significantly. Ranks are able to compute
sections of each image in parallel, and the more ranks allocated,
the better the results. We put actual numbers to these observations
in section (7).

This approach has somemajor issues that we predicted before we
started, and later confirmed once we began running some test cases.
This is the idea that each rank gets the same amount of pixels to
work with, regardless of the actual scene. As such, some ranks can
finish much more quickly than others and lay idle until completion,
lowering the overall run times significantly. This problem and our
first solution is described in the next section.

3.3 Cost Metric
In the Naïve parallel algorithm described in section 3.2, we point out
that some ranks may finish sooner than others. This leads to having
multiple ranks lay idle for potentially a very long time until the
final render. This issue is caused by the different costs to compute
each pixel. In areas where rays hit nothing but background, we
can quit early; there is no need to compute expensive shadow rays,
reflection rays, or any of the many instances of additional recursion.
In areas of the scene where there are reflective or glossy surfaces,
the time required to calculate the shading at each pixel is much
more involved as it can result in shooting thousands of additional
rays.

This is further impacted by the spacial locality of these issues.
As ranks are assigned contiguous regions of the output image to

compute, they often get lots of the same surface to compute. So a
rank that gets some background (such as those assigned the top
portion of many of our test cases) will often get lots of background,
while a rank containing a reflective surface will usually need to
compute a large majority of that surface just on its own. This
compounding effect is more noticeable on runs with fewer ranks,
but is present on larger tests as well.

To combat this issue, we introduce a cost metric to try and evenly
distribute pixels to each rank not based on sheer number, but on
estimated cost. We experimented with a variety of parameters and
found a solution that works well enough. There is definite room for
improvement, but as a preliminary idea we think it has potential.
Our approach is a preprocessing step where we shoot one ray
per pixel to see what type of object it hits. If it hits background,
we consider the pixel to be basically free, while we scale the cost
of hitting reflective surfaces based on various factors such as the
number of potential bounces or the expected number of shadow
rays we might produce.

We then apply this cost estimation to the division of labor be-
tween ranks. Each rank will be assigned a number of pixels where
the total cost is roughly balanced over all ranks with the hope that
each rank will finish at roughly the same time. The metric itself is
not super cheap to compute with the expense of collision checking,
but it is parallelized and can be stored and reused after creation for
new renders with the same resolution and camera position.

We expect there to be loads of papers with well developed cost
metrics out there, but we have not read any in particular to cite
them.

3.4 Chunks
While a metric based approach is appealing, it is not particularly
effective when the approximations are poor. In larger scenes this
could result in much slower runs if the metric fails to accurately
predict the cost of pixels.

We instead shift to a more dynamic algorithm for managing this
load balancing problem. Here we begin to stray from the idea of an
embarrassingly parallel implementation into something with more
complicated inter rank communication. For our major technique,
we need to introduce the idea of chunks.

Chunks can be considered smaller slices of groups of pixels than
the divisions described above. In our code, we generate chunks of
roughly fifty to one hundred pixels in size, which is a very small
percentage of the overall image. For reference, a 4k image is roughly
8.3 million pixels, so there would be about 83,000 chunks in our
average case.

Chunk sizes can be configurable based on the cost metric or
given a fixed size. In our code, we use the metric of section (3.3) to
have variable sized chunks to try and balance work even further.
With a good metric implementation, this could result in further
performance improvements.

3.5 Bargaining
Our major contribution in this project is our load balancing scheme
which we affectionately call bargaining. As a high level summary,

2



each rank is now given a queue of chunks to process while com-
municating with other ranks to keep the queues roughly the same
cost.

We achieve this by adding some additional threading to handle
communication between ranks. Each rank splits into two threads:
one is responsible for computing the shading, while the other han-
dles inter-rank communications to try and keep its queue balanced.
Every second, we send out a heartbeat message to neighboring
ranks on the left and right, as well as broadcasting a message to all
ranks to try and maintain an idea of how much more computation
exists out there. If our upcoming work load is more than the global
average, we peal off a chunk from our queue and offload it to a
neighbor instead.

Over time, this technique results in a balancing out of the work
over all ranks, sort of like spreading butter. We start out with the
basic naïve distribution and over time this iterative technique con-
verges to a healthier balance. As we’re constantly updating work-
loads, we ensure no rank ends much earlier than the rest as they
all finish roughly at the same time. This improves the results even
with a poor metric that has bad approximations of the actual costs.

4 BITMAP GENERATION
To create the hand-drawn aesthetic for rendered three-dimensional
scenes, we implemented bitmap generation, according to themethod
described by [3]. To generate the many levels of density needed,
multiple bitmaps are created, each with a slightly different density
parameter. Markov chains are used to dictate the generation of
individual black pencil strokes on a white bitmap.

This behavior is defined by two random variables: the deviation
chance, or the chance at any one iteration for a pencil stroke tomove
one pixel in a direction perpendicular to its prescribed direction,
and the terminate chance, or the chance that a pencil stroke ends,
or stops propagating, at any one iteration. In addition, there are two
integer variables - one dictates the minimum length of any pencil
stroke, which prevents pencil stroke termination until a certain
number of recursions has completed , and one dictates the cell
stroke density, or how often a new stroke should be generated in
the bitmap. This is done in a stratified fashion; therefore, the bitmap
is not too “clumpy”.

Having created multiple bitmaps with multiple densities, our
next step is to calculate the approximate brightness level of the
pixel, as discerned from ray-tracing. This will allow us to decide
which bitmap should be projected on that pixel. We do this by
calculating thresholds for various brightnesses and mapping the
corresponding bitmaps to those regions of the image. Therefore,
we end up with an image such as the one in Figure (3). As bitmap
generation is not as computationally expensive as raytracing, it is
permissible to run this routine as a post processing step, offline.
Therefore, the bitmap generation is not a focus of our parallel study.
Regardless, the graphical expression it grants us serves as a main
motivation for this project.

Figure 2: Bitmap levels

5 EDGE DETECTION
The technique described in [3] includes an algorithm for detecting
silhouette edges to maintain clarity after bitmap application. Their
process works with the real time graphics pipeline, so they have
access to the actual edges of the mesh. In our ray-traced approach
we do not have that luxury so we have to resort to a slightly more
complicated calculation.

We were lucky to find a paper [1] that achieves exactly what we
need. Their algorithm can detect all sorts of critical lines including
silhouettes (borders of objects over a background or other objects),
self occluding silhouettes, and crease edges (large variations in
surrounding normals). For time constraints, we only considered
major silhouettes.

To showcase the importance of edges, note figure (3). Here, we
render a scene with our technique without edges. Notice that the
larger sphere blends into the background surface, and it can be
difficult to differentiate where one object begins and ends. Figure
(4) re-renders the same image with an edge thickness of 0.01. This
updated version works really well with our pencil shader as it
includes the types of lines real life artists would use to sketch an
image.

3



Figure 3: Spheres rendered without edges: notice the blend-
ing of the larger sphere into the background

Figure 4: Spheres rendered with edges

5.1 Stencils
To achieve these silhouette edges, we construct nine additional rays
for each pixel (none of which can generate a recursive bounce). We
shoot one ray through the center of the pixel and determine the id

of the object it hits. We then shoot eight arrays in a circle of radius
h around the center ray, with their positions calculated in image
space. We tally up the number of different object ids that they hit,
and note that a silhouette edge occurs when roughly 50% of the
rays hit different objects.

We only care about silhouette edges and use only one ring of
samples. For higher quality edges with more potential features, we
direct you to [1] instead.

5.2 Antialiased Edges
One of the major feature of [1]’s algorithm is their ability to have
smooth anti-aliased edges based on the percentage of the stencil
rays that hit different objects. Closer to 50-50 results in a harder
edge than an 80-20 split. This corresponds to a darker shade of
black and produces smooth curves in the final output.

We originally tried to implement this feature, but ran into some
issues causing the doubling of edges. Thus, we scrapped this smooth-
ness technique for time, and our edges remain pixelated. We are
reasonably happy with how they turned out regardless of these is-
sues, and they are not extremely noticeable once we add the bitmaps
on top.

6 PARALLEL PERFORMANCE RESULTS
We can examine the completion time of each rank based on our
various parallel algorithms by looking at the numbers obtained
from our sphere test case. We first show the unsorted completion
time of each rank, which is useful since we can predict which area of
the image was being rendered. To the far left is the top of the image
(which is mostly background), the spikes in the middle of some
graphs are the reflective spheres, and the far right is the bottom of
the image which is mostly flat surface.

The second graph in each pair is sorting the results by time.
Ideally, we want to achieve a balanced result with all ranks finishing
at the same time to avoid idling. Our earlier approaches fail to
achieve this standard, and we can see the balancing in action with
the last pair of graphs.

In [4], the authors investigate why their supercomputer was
taking much longer than expected to complete basic calculation op-
erations. Eventually, they discovered that OS noise, which matched
the frequency of their operations, was severely degrading perfor-
mance. In a previous implementation of the bargaining algorithm,
our messaging thread had an "eager" approach towards message
transmission and reception - after immediately processingmessages
to or from neighbors, it would resume listening for and sending
information about the status of the ray-tracer thread on the same
rank.However, this eagerness was degrading the performance of
the ray-tracer thread, possibly due to OS scheduling - to the point
where runs were expiring as they exceeded wall clock limits. As
such, a one second delay introduced between the reception and
transmission of interprocess messages substantially improved the
performance of the overall ray tracing.A comparison between naive,
metric, and bargaining yields an easy observation - the naive al-
gorithm is certainly the worst - certain ranks finish much faster
than others. For example, certain pixels in an image may require
more processing as ray tracing may encounter materials that are
reflective, or need to be checked for shadows, and so on.

4



Naive

0 1000 2000 3000 4000 5000 6000 7000 8000

Rank #

0

50

100

150

200

250

300

350

400

450

500

T
im

e
 (

s
e
c
o
n
d
s
)

Naive (sorted)

0 1000 2000 3000 4000 5000 6000 7000 8000

Rank # (not in order)

0

50

100

150

200

250

300

350

400

450

500

T
im

e
 (

s
e
c
o
n
d
s
)

Metric

0 1000 2000 3000 4000 5000 6000 7000 8000

Rank #

0

50

100

150

200

250

300

350

T
im

e

Metric (sorted)

0 1000 2000 3000 4000 5000 6000 7000 8000

Rank # (not in order)

0

50

100

150

200

250

300

350

C
o
m

p
le

ti
o
n
 T

im
e

Bargaining

0 1000 2000 3000 4000 5000 6000 7000 8000

Rank #

0

50

100

150

200

250

300

350

400

T
im

e

Bargaining (sorted)

0 1000 2000 3000 4000 5000 6000 7000 8000

Rank # (not in order)

0

50

100

150

200

250

300

350

400

T
im

e
 (

s
e
c
o
n
d
s
)

5



7 PERFORMANCE SCALING
In this section, we examine the performance gains achieved by
allocating more physical resources towards our code. We look at
altering the number of ranks to see how much relative speedup we
gain by pulling in more cores.

As expected, we are able to achieve great speedup by adding
more ranks. This is due to the ease in which ray tracing can be
made parallel.

Performance Scaling (Bargaining)

256 512 1024 2048 4096 8192

Number of Ranks

0

100

200

300

400

500

600

700

800

900

C
o
m

p
le

ti
o
n
 T

im
e
 (

s
e
c
o
n
d
s
)

8 TECHNICAL LIMITATIONS
We ran into a number of issues during this project that each needed
a substantial amount of time and effort to solve. For one, our starting
codebase (provided by Professor Cutler) depended greatly on library
calls to OpenGL, a massive library simply not compatible with our
goals of compiling for the Blue Gene. After stripping out all OpenGL
code and reimplementing themajority of the camera tranformations
we required, we additionally programmed a system to directly
render results into a ppm file.

Furthermore, we needed to backport much of the modern C++
code of the original codebase into C++98, which took a non-trivial
amount of effort. The original code had no parallel components at
all, so we began iteratively adding more and more improvements a
little at a time as laid out in section (3).

Originally we had real time progress updates occuring at each
pixel with parallel file I/O; as each rank finished a pixel, it wrote
the output instantly. This allows being able to see the progress at
any particular point in time without issue, as well as stopping early
due to timeouts or crashes and still having actual partial results.

This real time updates originally were intended to serve as a
starting point for implementing very intuitive checkpointing. How-
ever, the Blue Gene did not allow us to have as many file I/O calls
as required for larger renders. We instead chose to write batches of
pixels at a time; in our final implementation we are able to leverage
the chunk system described in section (3.4) as a natural division
for combining the write calls into more efficient groupings. We still
maintain the visual progress bar, but the final results update much
slower due to the batching.

9 CONCLUSIONS
In this paper we present a strongly parallelized ray tracer which
uses intelligent load balancing to maintain equal work between
ranks. Further, we introduce a method for post processing ray
traced renders to redraw them in a non-photorealistic hand-drawn
result. Our tests examine the efficiency of our algorithm, and our
results produce high quality wallpaper-ready images of arbitrary
3D scenes.

10 FUTUREWORK
There are lots of areas to improve our efforts. Our metric can be
effective on some small examples, but has too much variance on its
efficacy when the number of shadow samples goes up. Our collision
detection algorithm is very primitive, as that was not a priority
focus of our project. The expense of checking ray-object collisions
adds up greatly with the sheer number of rays we end up shooting.

We can dive further into the ray-traced edge detection paper to
obtain the full spectrum of edges required for many scenes. Our
mesh processing techniques currently only works on quad meshes,
so adding the logic for triangles is desirable but not done due to
lack of time.

We can try and apply our technique to produce color pencil
drawings, which we imagine should not be too difficult to achieve.
Further improvements on the bitmap generation can be in produc-
ing smoother lines, more cohesive strokes, and a less pixelly looking
output.

11 ACKNOWLEDGEMENTS
We would like to thank Professor Cutler for the basic raytracing
code we started with, Professor Carothers for his help with the
supercomputer, and the invaluable assistance of Stack Overflow,
without whom we would be nothing.

REFERENCES
[1] A. N. M. Imroz Choudhury and Steven G. Parker, Ray tracing npr-style feature lines,

Proceedings of the 7th International Symposium on Non-Photorealistic Animation
and Rendering (New York, NY, USA), NPAR ’09, ACM, 2009, pp. 5–14.

[2] Robert L. Cook, Thomas Porter, and Loren Carpenter, Seminal graphics, ACM, New
York, NY, USA, 1998, pp. 77–85.

[3] Adam Lake, Carl Marshall, Mark Harris, and Marc Blackstein, Stylized rendering
techniques for scalable real-time 3d animation, Proceedings of the 1st International
Symposium on Non-photorealistic Animation and Rendering (New York, NY, USA),
NPAR ’00, ACM, 2000, pp. 13–20.

[4] Fabrizio Petrini, Darren J. Kerbyson, and Scott Pakin, The case of the missing
supercomputer performance: Achieving optimal performance on the 8,192 processors
of asci q, Proceedings of the 2003 ACM/IEEE Conference on Supercomputing (New
York, NY, USA), SC ’03, ACM, 2003, pp. 55–.

[5] Turner Whitted, An improved illumination model for shaded display, Commun.
ACM 23 (1980), no. 6, 343–349.

12 IMAGES

6



Figure 5: Watchtower

Figure 6: Multiple spheres (low shadow samples)

7



Figure 7: Reflective spheres (no post-process)

Figure 8: Mid-render progress: notice the chunks

8



Figure 9: Close up of a bitmap with pencil strokes

9


	Abstract
	1 Background
	2 Overview
	3 Parallelization Approach
	3.1 Sequential
	3.2 Naïve Parallel
	3.3 Cost Metric
	3.4 Chunks
	3.5 Bargaining

	4 Bitmap Generation
	5 Edge Detection
	5.1 Stencils
	5.2 Antialiased Edges

	6 Parallel Performance Results
	7 Performance Scaling
	8 Technical Limitations
	9 Conclusions
	10 Future Work
	11 Acknowledgements
	References
	12 Images

